Product Information Bulletin 317

2012 BCBC
- PlastiSpan
Insulation for
Interior Basement
Applications

Product Information Bulletin

BULLETIN NO.	317
ISSUED:	December 9, 2015
REPLACES:	December 1, 2015

2012 BCBC - PlastiSpan® Insulation for Interior Basement Applications

Page 1 of 4

A Canada Mortgage and Housing Corporation (CMHC)/Canadian Home Builders Association (CHBA) report concluded that use of insulation partway down the interior of a basement wall, as is typical for many residential applications, actually increases heat loss to the adjacent soil because the upper zone insulation is appreciably short-circuited by the heat loss from below.

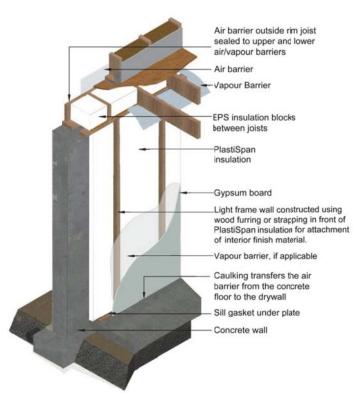
PlastiSpan® insulation is a rigid closed cell, expanded polystyrene (EPS) insulation. It is an ideal solution to provide full-height interior basement wall insulation. Table 1 below provides material properties for PlastiSpan insulation material.

Table 1 – PlastiSpan Insulation – CAN/ULC-S701, Type 1 Material Properties

Material Property ¹	ASTM Test Method Units		PlastiSpan Insulation	
Thermal Resistance	C518	m²•°C/W	0.65	
Minimum per 25 mm (inch)	0010	(ft²•h•°F/BTU)	(3.75)	
Compressive Resistance	D1621	kPa	70	
Minimum @ 10% Deformation	D 1021	(psi)	(10)	
Flexural Strength	C203	kPa	170	
Minimum	C203	(psi)	(25)	
Water Vapour Permeance ²	E96	ng/(Pa·s·m²)	300	
Maximum		(Perms)	(5.0)	
Water Absorption ³ Maximum	D2842	% By volume	6.0	
Dimensional Stability Maximum, 7 Days @ 70 ± 2 °C (158 ± 4 °F)	D2126	% Linear Change	1.5	
Limiting Oxygen Index Minimum	D2863	%	24	

This bulletin highlights some of the typical details that should be considered when using *PlastiSpan* insulation for this application.

^{1.} *PlastiSpan* insulation properties are third party certified to CAN/ULC-S701, *Standard for Thermal Insulation, Polystyrene, Boards and Pipe Covering*, under a certification program administered by Intertek and are listed by the Canadian Construction Materials Centre (CCMC) under evaluation listing number 12424-L.


^{2.} WVP values quoted are maximum values for 25-mm thick samples with natural skins intact. Lower values will result for thicker materials.

^{3.} The water absorption laboratory test method involves complete submersion under a head of water for 96 hours. The water absorption values above are applicable to specific end-use design requirements only to the extent that the end-use conditions are similar to test method requirements.

2012 BCBC - PlastiSpan Insulation for Interior Basement Applications Product Information Bulletin 317

Page 2 of 4

PlastiSpan insulation can be attached using an adhesive compatible with EPS insulation directly to the interior face of the basement wall to provide a continuous layer of insulation. Special attention is required to ensure the area between the top of the basement wall and the upper building envelope is sealed to reduce air leakage. **PlastiSpan** insulation blocks can be used to insulate the rim joist and seal the space between the floor joists.

When applied as the sole insulation on the interior of the basement wall *PlastiSpan* insulation addresses the following requirements in the 2012 British Columbia Building Code (BCBC):

- Provides moisture protection for interior finishes as per Sentence 9.13.2.6.(1) of 2012 BCBC.
- 2. May eliminate the need for a separate vapour barrier as per Sentence 9.13.2.6.(3) of 2012 BCBC.
- 3. **Effective thermal resistance** required as per 2012 BCBC Article 9.36.2.8.

2012 BCBC - Moisture Protection

Using a continuous layer of *PlastiSpan* insulation attached directly to the basement wall allows construction of a light frame wall using wood furring or strapping built in front of the insulation for attachment of the interior finish material.

2012 BCBC, Sentence 9.13.2.6.(1) requires that the interior surface of basement walls below ground level be protected by a material that minimizes the ingress of moisture from the basement wall into interior spaces, where

- a) a separate interior finish is applied to a concrete or unit masonry wall that is in contact with the soil, or
- b) wood members are placed in contact with such walls for the installation of finish materials.

PlastiSpan insulation applied as a continuous layer on the interior of a basement wall provides protection for interior finish materials and wood framing members.

2012 BCBC - Vapour Barrier Requirements

The 2012 BCBC indicate that where low-permeance insulation such as EPS insulation is the sole thermal insulation in a building assembly, the temperature of the inner surface of the insulation will be close to the interior room temperature. 2012 BCBC states that if the foamed plastic insulation has a vapour permeance below 60 ng/Pa•s•m², it can fulfill the function of a vapour barrier to control condensation within the assembly due to vapour diffusion.

2012 BCBC, Sentence 9.13.2.6.(3) contains the additional requirement that where the insulation functions as both moisture protection for interior finishes and as a vapour barrier in accordance with Subsection 9.25.4., it shall be applied over the entire interior surface of the foundation wall.

2012 BCBC - PlastiSpan Insulation for Interior Basement Applications

Product Information Bulletin 317

Page 3 of 4

As indicated in Table 1, *PlastiSpan* insulation has a maximum vapour permeance of 300 ng/Pa•s•m² for a 25 mm (1") thickness. Therefore, a separate vapour barrier on the warm side of the insulation would be required in wall assemblies using *PlastiSpan* insulation at a thickness less than 125 mm (5").

2012 BCBC - Energy Efficiency Requirements

2012 BCBC, Section 9.36 provides energy efficiency requirements for buildings 3 storeys or less in building height, having a building area not exceeding 600 m² and used for major occupancies classified as residential occupancies.

Energy efficiency requirements in 2012 BCBC, Subsection 9.36.2. are based upon minimum **effective thermal resistance** (RSI_{eff}/R_{eff}) of building assemblies which includes the effect of thermal bridging due to repetitive structural members such as wood framing members in wall or roof assemblies calculated using the following formula.

$$RSI_{eff}(R_{eff}) = \frac{100\%}{\text{% with Framing}} + \frac{\% \text{ Area Cavity}}{\text{RSI}_{E}(R_{E})} + \frac{\text{RSI}(R) \text{ Continuous Material Layers}}{\text{RSI}_{C}(R_{C})}$$

Table 2 provides RSI_{eff} (R_{eff}) for basement walls per 2012 BCBC, Tables 9.36.2.8.A. (for buildings without a heat-recovery ventilator) and 9.36.2.8.B. (for buildings with a heat-recovery ventilator).

Table 2 - Minimum RSI_{eff} (R_{eff}) - Basement Walls Below or In Contact with Ground

2012 BCBC Climate Zones	Zone 4	Zone 5	Zone 6	Zone 7a	Zone 7b	Zone 8		
Heating Degree-Days (HDD) Celsius Degree-Days	< 3,000	3,000 to 3,999	4,000 to 4,999	5,000 to 5,999	6,000 to 6,999	≥ 7,000		
Table 9.36.2.8.A. Effective Thermal Resistance								
RSI _{eff} - m ² •°C/W	1.99	2.98	2.98	3.46	3.46	3.97		
R _{eff} - ft ² •hr•°F/BTU	11.3	16.9	16.9	19.6	19.6	22.5		
Table 9.36.2.8.B. Effective Thermal Resistance								
RSI _{eff} - m ² •°C/W	1.99	2.98	2.98	2.98	2.98	2.98		
R _{eff} - ft ² •hr•°F/BTU	11.3	16.9	16.9	16.9	16.9	16.9		

Table 3 provides annual heating degree days for some building locations in Climate Zones 4 to 7a as per 2012 BCBC, Division B, Appendix C.

Table 3 - Annual HDD (Celsius Degree Days) for Building Locations

Climate Zone	4	4 Climate Zone 5		Climate Zone 6		Climate Zone 7a	
Locations	HDD	Locations	HDD	Location	HDD	Locations	HDD
Duncan	2980	Hope	3000	Cranbrook	4400	100 Mile House	5030
Victoria	2650	Nanaimo	3000	Golden	4750	Smithers	5040
West Vancouver	2950	Burnaby	3100	Terrace	4150	Dawson Creek	5900
Abbotsford	2860	Kamloops	3450	Whistler	4180	Mackenzie	5550
Chilliwack	2780	Kelowna	3400	Prince George	4720	Glacier	5800

Table 4 provides the RSI_{eff} (R_{eff}) for a basement wall assembly using PlastiSpan insulation to provide a continuous insulation layer over the interior of the basement wall to meet minimum requirements for 2012 BCBC Climate Zone 4.

2012 BCBC - PlastiSpan Insulation for Interior Basement Applications Product Information Bulletin 317

Page 4 of 4

Table 4 – PlastiSpan Insulation Interior Basement Example – 2012 BCBC Climate Zone 4

System Description	RSI _F	RSI _c	Continuous Materials	
203 mm (8") Basement wall			0.08	
102 mm (2.5") <i>PlastiSpan</i> Insulation			1.65	
Wood Strapping @ 600 mm (24")	0.54			
13 mm (1/2") Gypsum wall board			0.08	
Inside Air Film			0.12	
Total	0.54	NA	1.93	
% Area of Each Component	13%	NA	100%	
RSI _{eff} (R _{eff})	RSI-2.00 (R11.4)			

Table 5 provides the $RSI_{\rm eff}$ ($R_{\rm eff}$) for a basement wall assembly using PlastiSpan insulation board to provide a continuous insulation layer over the interior of the basement wall to meet minimum requirements for 2012 BCBC, Table 9.36.2.8.A. for Climate Zones 5 to 6 & Table 9.36.2.8.B. for Climate Zones 5 to 8.

Table 5 - PlastiSpan Insulation Interior Basement Example - 2012 BCBC Climate Zones 5 to 8

System Description	RSI _F	RSI _c	Continuous Materials	
203 mm (8") Basement wall			0.08	
102 mm (4") <i>PlastiSpan</i> Insulation			2.64	
Wood Stud @ 600 mm (24")	0.54			
13 mm (1/2") Gypsum wall board			0.08	
Inside Air Film			0.12	
Total	0.54	NA	2.92	
% Area of Each Component	13%	NA	100%	
RSI _{eff} (R _{eff})	RSI-2.99 (R17.0)			